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SUMMARY 

Five principles govern the selection of nonlinear regression models for bacterial growth. Examples are given of the various ways in which researchers have 
approached the problems of nonlinear regression modeling together with some discussion of linear modeling. 

As a consequence of the fact that physical and biological 
models often arise as solutions of differential equations, 
regression models that describe natural processes are often 
nonlinear in the model parameters (coefficients). An 
important consequence of the fact that a regression model 
is nonlinear is that the least-squares estimators of its 
parameters do not possess the desirable properties of their 
counterparts in linear regression models, that is, they 
are not unbiased, minimum variance, normally distributed 
estimators. Instead, the parameter  estimators in nonlinear 
models may be greatly biased, have considerable excess 
variance above the minimum variance bound, and have a 
markedly skewed distribution. Nonlinear regression models 
differ greatly among themselves in the extent to which the 
estimators exhibit these manifestations of nonlinear behavior. 
Ratkowsky [18] labeled models with a small amount of 
nonlinearity 'close to linear',  since the parameter estimators 
of such models will be almost unbiased, have variances only 
slightly in excess of the minimum attainable variance, and 
be almost normally distributed. Models whose parameters 
give rise to estimators that don't  possess this property were 
labeled 'far from linear',  for obvious reasons. 

Reparameterization, that is, changing the form in which 
the parameters appear in the model, may improve a model 's 
estimation properties and make the model close to linear. 
Sometimes it is only a single parameter that is the cause of 
a model exhibiting far-from-linear behavior. Numerous 
examples of the way in which reparameterization can improve 
a model 's properties are given in Ratkowsky [18,19]. In 
[19], a general procedure for obtaining a class of close-to- 
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linear parameters known as 'expected-value' parameters is 
described. 

In predictive microbiology, a wide range of nonlinear 
regression models are in use. Isothermal growth of bacteria 
has often been modeled by use of nonlinear regression 
models such as the Gompertz [5,10] or the logistic [10]. A 
multitude of nonlinear regression models has been proposed 
and tested for modeling the temperature dependence of the 
bacterial growth rate constant. These include the square- 
root models [20], the Arrhenius-based Johnson-Lewin model 
[12], the Sbarpe-DeMichele [25] and Schoolfield et al. 
models [24], and the damage/repair model [11]. Extensions 
of some of the above models to include water activity effects 
[6,7,15] or pH effects [2] also result in nonlinear regression 
models. Therefore, since predictive microbiological models 
are almost invariably nonlinear regression models, it is 
important to be able to ascertain the extent to which 
the parameter estimators are biased and non-normally 
distributed. This is especially true as the parameters of these 
models are often said to have physical or biological meaning. 
Clearly, a parameter representing some physical quantity 
would be of little practical use if its estimator were grossly 
biased. 

In this paper, we describe five principles, considerations 
or desiderata that modelers should be aware of, when 
indulging in a nonlinear regression modeling exercise. For 
more elaboration on the ideas to be presented below, see 
[3, Ch. 3] and [19, Chs. 2 and 10]. The five points are listed 
briefly below, then discussed more fully in subsequent 
paragraphs. 

(i) Parsimony (models should contain as few parameters 
as possible) 

(ii) Parameterization (find the one which has the best 
estimation properties) 

(iii) Range of applicability (the data should cover the full 
range of X and Y) 

(iv) Stochastic specifcation (the error term needs to be 
modeled, too) 
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(v) Interpretability (parameters should be meaningful, as 
far as possible). 

specific X value. Amongst the alternative parameterizations 
of this model are 

(i) Parsimony 
The principle of parsimony embodied in Ockham's Razor, 

a philosophic principle enunciated by medieval clergyman 
William of Ockham (or Occam) which translates loosely as 
'Entities are not to be multiplied beyond necessity', forms 
a basis for regression modeling just as it does for other 
scientific endeavors. A simple model is thus seen by 
that principle to be more desirable than a complex one. 
(Surprisingly, there are a large number of scientists, perhaps 
even a majority, who think that a complex model is 'better ' ,  
usually in some undefined or vague sense, than a simple 
one.) Belief in parsimony will automatically direct a modeler 
towards developing as simple a model as possible which 
explains the phenomenon under study. 

There is a very practical reason for seeking as simple a 
model as possible that will describe a phenomenon, as, in 
general terms, the greater the number of parameters, the 
greater the extent of nonlinear behavior. For example, most 
one-parameter models are either close to linear or exhibit 
only a small amount of nonlinearity. Two-parameter models 
will usually require that their original form be repara- 
meterized to obtain a close-to-linear model. Examples of 
three- and four-parameter models that are close to linear 
are rare, and the author does not know of any close-to- 
linear five-parameter models. Keeping the model as simple 
as possible with few parameters is the way of being likely 
to obtain a model with a small amount of nonlinearity. 

(ii) Parameterization 
It is a ra re  nonlinear regression model of two or 

more parameters that is close to linear in its original 
parameterization. Consider the following two-parameter (a  
and/3) model, for describing a convex curve (see Fig. 1 for 
the shapes described by this curve), 

y = a/3 x, (1) 

where X is the explanatory (regressor) variable and y is the 
expected value of the response (dependent) variable at the 

Y 
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Fig. 1. Example of a two-parameter model for describing a convex 
�9 curve: (a) /3 < 1; (b) /3 > 1: 

y = a exp(yX) (2) 

and 

y = exp(a + yX). (3) 

These models differ from each other only in the form in 
which the parameters appear in the model; in all other 
respects, the three models are identical. That is, given a set 
of data to which these models are fitted, the fitted values 
at each value of X will be the same for each of the three 
models. Note that parameter a appears in both Eqns (1) 
and (2); this is deliberate, as it is the same parameter in 
each model. That is, changing/3 in Eqn (1) to y in Eqn (2) 
by use of the relationship/3 = exp(7) does not change the 
least-squares estimate of a, its standard error, and other 
estimation properties. Therefore, if one parameter in a 
model is far from linear, with the other parameters being 
close to linear, one may reparameterize the offending 
parameter without disturbing the properties of the other 
parameters. Generally speaking, Eqn (3) has better properties 
than either Eqn (1) or Eqn (2), determined by testing the 
three models on various generated data sets (Ratkowsky, 
unpublished results). A particularly useful form of repara- 
meterization is via the use of 'expected-value' parameters, 
also called 'stable'  parameters [22,23]. Many examples of 
how to use expected-value parameters may be found in [19]. 
Suffice it to say that Eqns (1)-(3) can be reparameterized 
to give the following model, 

Y = y(i ~ x2)/%-~) y(ixl-x)/%-x~) 

in which the 'new' parameters are Yl and Y2, representing 
the expected values corresponding to X = X1 and X = X2, 
respectively. Provided X1 and X2 are chosen to be well 
within the range of the observed data, the parameters Yl 
and Y2 will have excellent estimation properties, being close 
to linear in behavior. 

(iii) Range o f  applicability 
It is important that the data set to which the model is 

fitted covers the full range for which the model applies. 
One major source of poor estimation behavior lies with the 
fact that sometimes a fit is attempted to a model when only 
fragmentary data are available. For example, consider Fig. 
2, which shows a Gompertz model, one parameterization of 
which is given by 

y = a e x p [ - e x p ( / 3 -  yX)], (4) 

trying to represent da ta  that includes almost no readings 
above the inflection point of the model. Attempts to fit 
such a model to the data depicted often fails to achieve 
convergence to the least-squares estimates. Even if conver- 
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Fig. 2. Examples of Gompertz model. (a) Data describing full range 
of applicability of model; (b) Data in lower region only. 

gence does occur, the estimation properties are likely to be 
very poor, with the three parameters ce, /3 and 7 all being 
far from linear. 

(iv) Stochastic specification 
A regression model, whether it be a linear or a nonlinear 

model, consists of two components, a deterministic part and 
a stochastic part. The deterministic part represents the 
true relationship between the response variable and the 
explanatory variable. Hence, a model such as Eqn (4), if 
indeed a Gompertz model is appropriate,  could better be 
written as 

Y = a exp[ -exp( /3 -yX)]  + �9 (5) 

where �9 represents the 'error '  or stochastic term, and Y 
denotes the random variable representing the response. 
Customarily, for a fixed value of X, one uses an averaging 
process via the expectation operator E, to obtain 

E(Y) = a exp[ -exp( /3 -  TX)], 

thereby averaging over the values of the random error term 
e. Often, E(Y) is written y, as in Eqns (1)-(4). 

The usual method of obtaining the estimators of the 
parameters is by use of ordinary least squares. This gives 
equal weight to each of the data points and implies that E 
is homogeneous, that is, having the same mean and variance 
for each possible value of X. In addition, it is usually 
assumed that these errors are normally distributed, an 
assumption that is needed for carrying out tests of signifi- 
cance. If �9 is not homogeneous, then one may use weighted 
least squares or seek a transformation of the response 
variable. 

As an example of a transformation of the response, 
consider a Gompertz curve with a multiplicative, rather than 
an additive, stochastic term: 

Y = a exp[ -exp( /3 -  TX)]E'. 

Taking the logarithm of both sides results in 

lnY = In (c~ exp[ -exp( /3-yX)]}  + In e' 
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where In e' may now represent independent,  normally 
distributed random error, and thereby allow the above 
regression model to be fitted by ordinary least squares using 
In Y as the response variable. 

In predictive microbiology, one is usually interested in 
modeling the growth rate constant as a function of tempera- 
ture and other factors. One set of such models, the so- 
called square-root models, have the following forms, 

,fk = b ( T -  Train) (6) 

and 

~/k = b( T -  Train) ( 1 - e x p [ c ( T -  Tmax)]), (7) 

with the former to be used in the low temperature region 
(below the optimum temperature for growth) and the latter 
to be used throughout the entire biokinetic temperature 
range. In these models, T is the absolute temperature, k is 
the growth rate constant (which might be obtained as the 
reciprocal of the lag phase duration or of the time required 
to reach a specified level of spoilage), and b, c, Train and 
Tma~ are parameters, the latter two being notional minimum 
and maximum temperatures for growth, respectively. The 
stochastic assumption that is being implicitly made in Eqns 
(6) and (7) is that the error term (which is not explicitly 
written down in those equations) is homogeneous in ~ and 
not in k itself or in some other transformation of k. In the 
early development of these equations [20,2i], the data sets 
lacked replication at each temperature,  and the question of 
what was the correct form of the stochastic term was 
decided by examining the residuals after fitting various 
transformations of the response variable. More recently, 
however, Zwietering et al. [27], in modeling the temperature 
dependence of growth of Lactobacillus plantarum, concluded 
that the correct stochastic assumption was that e was 
homogeneous in k, that is, the appropriate model form 
should be written and fitted as 

k = [b(T-  Tmin)]2{1-exp[c(T- Tmax)]} 2. (8) 

A further modification due to those authors is to drop the 
exponent 2 from the right-hand-most term, that is, to model 
growth throughout the entire bacterial growth range using 

k = [b(T-  Tmin)]2{1-exp[c(T- Tmax)]}. (9) 

Heitzer et al. [11] also concluded that the variance of k was 
constant, rather than the variance of xfk, and used Eqn (8) 
to model the growth rate constants of K. pneumoniae NCIB 
418, E. coli NC3, the coccobacillus strain NA17, and 
Bacillus sp. strain NCIB 12522. 

Other authors, in using other growth models, have made 
other stochastic assumptions. Consider first the 
Sharpe-DeMichele model 
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k =  
1 + exp [(ASL-AHL/T)/R] + exp[(ASH-AHH/T)/R] 

(10) 

where q~, A/F, ASL, AHL, ASH and AHH are parameters 
which were said to reflect individual thermodynamic charac- 
teristics of the organism's control enzyme system. In this 
model, the response variable appears on the left-hand side 
of the equation as k. Although Sharpe and DeMichele [25] 
fitted Eqn (10) to eight data sets (see their Figure 2) using 
'a non-linear regression technique', they did not actually 
state whether the k was transformed or not. Schoolfield et 
al. [24] modified the original formulation with the aim 
of improving the model's 'regression suitability'. Their 
reparameterization is written as 

k =  

o FA-- A{1 p(25 C) 298 exp [ W  - 1)] 

[5HL/ 1 [AHH{ 1 
1 exP[R-/T1/2L ~)J+  1)]  + e x p [ ~  T1/2H 

(11) 

in which the entropy parameters have been replaced by 
temperatures said to correspond to conditions at which the 
enzyme is half inactivated. Weighted nonlinear regression 
was used in which k was 'weighted according to the reciprocal 
of the rate values' on the grounds that 'low rates tend to 
be measured with greater accuracy than high rates'. 

Later, Adair et al. [1], in comparing the Arrhenius 
model to the square-root models, reverted back to a 
parameterization which is more reminiscent of the original 
Sharpe-DeMichele form, after taking logarithms of both 
sides, than of the Schoolfield et al. [24] reparameterization. 
The form they used for the full temperature range was 
equivalent to the following (since In (1/time) = In k), 

In k = - A - B / T  + In(T) 

- ln{l+exp[F+(D/T) + exp[G+(H/T)]}, (12) 

where A, B, D, F, G and H are functions of the 
thermodynamic parameters of Eqn (10). Adair et al. [1] 
fitted this model using standard unweighted non-linear 
regression with In (lag or generation time) = - In  k as the 
dependent variable. 

Thus, the stochastic assumptions made by the various 
workers in modeling the growth rate constant are very 
diverse. 

(v) Interpretability 
Often there is a conflict between interpretability of the 

parameters and the goodness of their estimation properties. 
That is, a parameter may have good biological interpretability 
but be far from linear in estimation behavior. This was the 
reason why Schoolfield et al. [24] sought to reparameterize 
the Sharpe-DeMichele model, Eqn (10). However, Lowry 

and Ratkowsky [14] showed that the reparameterization 
represented by Eqn (11) did not achieve its objective, with 
the new parameters also exhibiting a high degree of non- 
linear behavior. 

The square-root model given by Eqns (7) or (9) contains 
four parameters, two of which (Trnin and Tmax) are readily 
interpretable as minimum and maximum notional tempera- 
tures for growth. These are the temperatures at which the 
model gives a zero value for k, the name 'notional' being 
used so as not to confuse them with the actual temperatures 
at which growth may cease. For example, Tmi n for Escherichia 
coli is about 3.5 ~ but the actual minimum temperature 
for growth of this organism is 7.8 ~ [16,26]. The other two 
parameters of Eqns (7) or (9), b and c, are less readily 
interpretable, except to note that b controls the rate at 
which k rises from Tmi n to its maximum at a temperature 
denoted as Topt, and c denotes the rate at which k declines 
between Topt and Tmax. 

The parameters of Eqns (10) and (11) purport to represent 
various thermodynamic constants, such as enthalpy and 
entropy changes. However, Brandts [4] showed that these 
thermodynamic quantities are strong functions of tempera- 
ture, and cannot be expected to be constant over the entire 
biokinetic temperature range. This helps explain the often 
anomalous results obtained by Adair et al. [1]. Although 
Adair et al. [1] did not present values of the estimated 
thermodynamic constants these values were calculated from 
the raw data of Adair et al. [1] by McMeekin et al. [17]. 
The estimated thermodynamic parameters for replicate data 
sets on the same commodity are inconsistent, thermodyn- 
amically impossible or unlikely (wrong sign), or of a 
magnitude that would exclude growth in the low temperature 
region. 

Another model, not discussed in previous sections, as it 
is a linear regression model, is the 'linear Arrhenius' model 
of Davey et al. [9], which adds a quadratic term to the 
usual Arrhenius form to produce 

C1 C2 (13) lnk= C0+ f f + ~ .  

As this model is only intended for the low temperature 
region, it is not as parsimonious as the simple square-root 
model given by Eqn (6). The coefficients Co, C1 and C2 are 
also not readily interpretable, but one advantage of the 
model is that it can be fitted by linear regression computer 
programs. Also, it was readily extended to model water 
activity as well as temperature effects [8] with the following 
relationship, 

C1 C2 
Ink = Co + ~ + ~ + C3aw -- C4 a2, (14) 

also a linear regression model. The parameters are not 
readily interpretable. 

The simple square-root model has also been modified to 
model water activity as well as temperature [6, 7, 15] using 
the following model form, 
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x[k = c(r -Tmin)  ,j(aw - aw min). (15) 

This model  contains only three parameters ,  two of which, 

Tmin and aw min, are readily and obviously interpretable.  
Adams et al. [2] have shown that a model  of identical form 

can be applied to changes in pH  rather than aw, 

�9 ]-s = c(T-Tmin) ~/(pH-pHmin), (16) 

Ratkowsky [19] emphasized the importance of examining 

whether  the parameters  in a nonlinear  regression model  

exhibited close-to-linear behavior.  One  way to examine this 
behavior is to carry out  a simulation study treating the 

parameter  estimates as though they were the true values of 

the parameters.  Kohler  et al. [13] carried out such a 

simulation study for the square-root  model  using the form 

given by Eqn (8), that is, with untransformed k as the 
dependent  variable. The distributions of  the estimates 
obtained from 500 trials were presented in their Figure 3, 

and showed that, for each of the four parameters ,  the 
estimates were close to being unbiased and normally 

distributed. Hence ,  one may have some confidence, when 

modeling with the square-root  models,  that the estimates of 
the parameters  will be close to being unbiased, normally 
distributed, minimum variance estimators. 
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